Application of Particle Filter for Target
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Particle Filter Technology Initiative
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» Track before detect capability

« Reduce detection threshold by 4X AR e

 Run on Massively parallel
machines like GPUs objects

biological

Track Cell growth
Track a female surfer

Tnack KV in Hover Test
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Particle Filter for Nonlinear System Parameter
Estimation and Prediction

« Small Busi Part
mall Business Partners - Technology Highlights

— Optimal Synthesis Inc b L

Polaris Svs Tech — Search, Detect, Track & Localize
- rolans oys lec " multiple objects in a complex nonlinear
— $5M USG/LM investment s state space

— Maximum utilization of sensory input
— Apps for Portfolio Investment Strategy

— Running million particles on multiple
Graphical Processor Units

« Commercialization =
— Improve search engine speed & accuracy
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— Rapid message tracking for cyber defense

— Market forecast (Optimal portfolio allocation S o e
and enhanced Black-Scholes market “NEiatas]™ \Filaaal™ Eie
Option price determination) ik i >

LM Program Applications:

Missile Defense Satellite motion control Space Debris tracking
Applications



General Bayesian Estimation

Aim: Construct the probability density function (pdf) of

the system state vector using all available information

Pdf: Provides complete
statistical description of 3
state of knowledge about ———p( X | Z )

-

X : System state vector, e.g.,
target position and velocity

system uncertainties

p(x

For example: pdf of target position

Y1 Z)

Z : Set of all available
measurements,
classifications, etc.

For nonlinear, non-Gaussian
systems, knowledge of the pdf
is the key to optimal estimation,

decision, and control.




Principle of Particle Filter

« Estimate statistical distribution of target uncertainty by
propagating & adjusting a large set of random samples
(particles)

SAMPLE REPRESENTATION
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Bayesian (Monte-Carlo) Recursive Estimation

Criteria KF PF

1 |Gaussian statistics |Yes Yes

Non Gaussiaan No (Mean & Cov

2 Yes (pdf
Statistics only) (pdf)

3 |Linear Dyanmics Yes Yes
EKF (Linear Particle

4 |Nonlinear Dynamic

expansion) Propagation

No, initialized Yes, shot gun

with particles

5 |Cold Start
near true state

Trade filter gains

6 |Convergence time . . Fast
with noise
Complexit
Simple but . P y
. ) . increase with
7 |Computation requires matrix
. . number of
inversion .
particles
Track before
8 No Yes

detect

Need external Captured in the
measurement

logic model

9 |[Multiple Targets |data association

Results from tacking a target across an
image plane

KF: Increases gains reduces response time and
has higher noise

PF: Consistent fast convergence and low noise
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Assign particles
with equal
weights at start

Update weights
with new
measurements

Resample
particles and
propagate to
new locations

Update weights
with next new
measurements
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Taken from: R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan, “The Unscented
Particle Filter,” Tech. Rept. CUED/F-INFENG/TR 380, Cambridge Univ. Engr. Dept., 2000.




Multiple Target Tracks

. 4 Targets at SNR =6

Particle Filter Advantages:
« > 4X reduction in detection threshold
« > 2X increase in detection range
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Tracking Two Targets at SNR =1 and 6

Frame 0
Facal Plane Image Tatal Estirnation Error in the Continuous State Space
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Modern Portfolio Theory (Harry Markowitz 1950)

A

 Price movements are unpredictable

« The changes in market prices of
securities can be described by the
Brownian motion (Random walk)

 Price changes (or return) are normally

X

© 0.5x
" Feasible Portfolios

Expected Return

distributed
- The decisions available to an investor are ) |
the proportions of available investments Volatility

to match their risk-reward profile An Optimal Portfolio

Price of of security

(1) p|i<+1_ p|i< — N(/ui’ai) i at time k

i A i Find max E{R}, from pdf
) R'=p.-p, Return on Investment (ROI) {R} p
N : . L
S Portfolio ROI; linear in X P(RIXV.Z
3 _ Ipl ) ! '
) R _ZX R X' are fractional allocation ( | _ P )
i=1 = A Posterior pdf of ROI R
() N & iv conditioned on portfolio X, risk V,
V = Z,Oij X' X Portfolio Risk (quadratic) and market data Z
i=1  j=1

Preliminary Results: 2X return for a given risk; Same return at 50% risk




